extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3×Dic3) = D12.2Dic3 | φ: S3×Dic3/C3×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.1(S3xDic3) | 288,462 |
C22.2(S3×Dic3) = D12.Dic3 | φ: S3×Dic3/C3⋊Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(S3xDic3) | 288,463 |
C22.3(S3×Dic3) = C12.D12 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.3(S3xDic3) | 288,206 |
C22.4(S3×Dic3) = C12.14D12 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(S3xDic3) | 288,208 |
C22.5(S3×Dic3) = C62.31D4 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C22 | 24 | 4 | C2^2.5(S3xDic3) | 288,228 |
C22.6(S3×Dic3) = S3×C4.Dic3 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.6(S3xDic3) | 288,461 |
C22.7(S3×Dic3) = C62.97C23 | φ: S3×Dic3/S3×C6 → C2 ⊆ Aut C22 | 48 | | C2^2.7(S3xDic3) | 288,603 |
C22.8(S3×Dic3) = Dic3×C3⋊C8 | central extension (φ=1) | 96 | | C2^2.8(S3xDic3) | 288,200 |
C22.9(S3×Dic3) = C3⋊C8⋊Dic3 | central extension (φ=1) | 96 | | C2^2.9(S3xDic3) | 288,202 |
C22.10(S3×Dic3) = C12.77D12 | central extension (φ=1) | 96 | | C2^2.10(S3xDic3) | 288,204 |
C22.11(S3×Dic3) = C12.81D12 | central extension (φ=1) | 96 | | C2^2.11(S3xDic3) | 288,219 |
C22.12(S3×Dic3) = C62.6Q8 | central extension (φ=1) | 96 | | C2^2.12(S3xDic3) | 288,227 |
C22.13(S3×Dic3) = C2×S3×C3⋊C8 | central extension (φ=1) | 96 | | C2^2.13(S3xDic3) | 288,460 |
C22.14(S3×Dic3) = C2×D6.Dic3 | central extension (φ=1) | 96 | | C2^2.14(S3xDic3) | 288,467 |
C22.15(S3×Dic3) = C2×Dic32 | central extension (φ=1) | 96 | | C2^2.15(S3xDic3) | 288,602 |
C22.16(S3×Dic3) = C2×D6⋊Dic3 | central extension (φ=1) | 96 | | C2^2.16(S3xDic3) | 288,608 |
C22.17(S3×Dic3) = C2×Dic3⋊Dic3 | central extension (φ=1) | 96 | | C2^2.17(S3xDic3) | 288,613 |