Extensions 1→N→G→Q→1 with N=C22 and Q=S3×Dic3

Direct product G=N×Q with N=C22 and Q=S3×Dic3
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=C22 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C221(S3×Dic3) = Dic3×S4φ: S3×Dic3/Dic3S3 ⊆ Aut C22366-C2^2:1(S3xDic3)288,853
C222(S3×Dic3) = S3×A4⋊C4φ: S3×Dic3/D6S3 ⊆ Aut C22366C2^2:2(S3xDic3)288,856
C223(S3×Dic3) = Dic3×C3⋊D4φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C2248C2^2:3(S3xDic3)288,620
C224(S3×Dic3) = C62.115C23φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C2248C2^2:4(S3xDic3)288,621
C225(S3×Dic3) = S3×C6.D4φ: S3×Dic3/S3×C6C2 ⊆ Aut C2248C2^2:5(S3xDic3)288,616

Non-split extensions G=N.Q with N=C22 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(S3×Dic3) = D12.2Dic3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C22484C2^2.1(S3xDic3)288,462
C22.2(S3×Dic3) = D12.Dic3φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C22484C2^2.2(S3xDic3)288,463
C22.3(S3×Dic3) = C12.D12φ: S3×Dic3/S3×C6C2 ⊆ Aut C22484C2^2.3(S3xDic3)288,206
C22.4(S3×Dic3) = C12.14D12φ: S3×Dic3/S3×C6C2 ⊆ Aut C22484C2^2.4(S3xDic3)288,208
C22.5(S3×Dic3) = C62.31D4φ: S3×Dic3/S3×C6C2 ⊆ Aut C22244C2^2.5(S3xDic3)288,228
C22.6(S3×Dic3) = S3×C4.Dic3φ: S3×Dic3/S3×C6C2 ⊆ Aut C22484C2^2.6(S3xDic3)288,461
C22.7(S3×Dic3) = C62.97C23φ: S3×Dic3/S3×C6C2 ⊆ Aut C2248C2^2.7(S3xDic3)288,603
C22.8(S3×Dic3) = Dic3×C3⋊C8central extension (φ=1)96C2^2.8(S3xDic3)288,200
C22.9(S3×Dic3) = C3⋊C8⋊Dic3central extension (φ=1)96C2^2.9(S3xDic3)288,202
C22.10(S3×Dic3) = C12.77D12central extension (φ=1)96C2^2.10(S3xDic3)288,204
C22.11(S3×Dic3) = C12.81D12central extension (φ=1)96C2^2.11(S3xDic3)288,219
C22.12(S3×Dic3) = C62.6Q8central extension (φ=1)96C2^2.12(S3xDic3)288,227
C22.13(S3×Dic3) = C2×S3×C3⋊C8central extension (φ=1)96C2^2.13(S3xDic3)288,460
C22.14(S3×Dic3) = C2×D6.Dic3central extension (φ=1)96C2^2.14(S3xDic3)288,467
C22.15(S3×Dic3) = C2×Dic32central extension (φ=1)96C2^2.15(S3xDic3)288,602
C22.16(S3×Dic3) = C2×D6⋊Dic3central extension (φ=1)96C2^2.16(S3xDic3)288,608
C22.17(S3×Dic3) = C2×Dic3⋊Dic3central extension (φ=1)96C2^2.17(S3xDic3)288,613

׿
×
𝔽